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THE APPROXIMATION OF STELLAR ENERGY 
DISTRIBUTIONS AND MAGNITUDES FROM 

MULTI-COLOR PHOTOMETRY 

Paul B. Davenport 

SUMMARY 

A procedure is developed for  approximating the energy distribution 
of a star from present day multi-color photometry. This approximation 
is then used to predict stellar magnitude relative to a light sensitive 
device with known spectral response. Using magnitudes in the U ,  B, V 
system it is found that the energy distributions of stars can be approxi- 
mated by this procedure fairly accurately over the range of 3000-8000 
angstroms. The stellar magnitude relative to a sensor whose dominant 
response lies in this region can then be determined with an accuracy of 
about 0.1 magnitude. 

V 
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THE APPROXIMATION OF STELLAR ENERGY 
DISTRIBUTIONS AND MAGNITUDES FROM 

MULTI-COLOR PHOTOMETRY 

INTRODUCTION 

With the increasing applications of star trackers in air and space navigation 
it is imperative that procedures be developed which accurately predict the magni- 
tude of a star relative to a given tracker. It certainly is not practical, nor in 
general feasible, to observe every star of interest each time a tracker with a 
different response becomes available. There have been many internally published 
documents from various organizations giving the photoelectric magnitudes of the 
brighter stars. All  of these lists, however, have been generated in practically the 
same manner i.e. black body radiation was assumed (the temperature obtained 
from various sources as a function of the Draper spectral type) to generate an 
index which is added to the Harvard visual magnitudes. Unfortuntely, this assump- 
tion as well as the basic data used is not accurate when compared with modern 
observations. These methods have also assumed that all sensors with the same 
S-number have the same spectral response which can be obtained from a hand- 
book containing the nominal response. The fact is, however, that even when two 
devices from the same manufactor a re  designated the same their measured re- 
sponse may be quite different causing deviations of up to a tenth of a magnitude. 
(This value was derived from our own calculations based upon the measured 
responses of dozens of photomultipliers of the same type. See also [ l l ) .  

Here, we present a procedure for determining stellar magnitudes which uses 
the latest available data, namely multi-color photometry such as  the U, B, V 
system [2 ] ,  [ 3 1, and [4 3. The approach here is to obtain information about the 
energy distribution of a star from the observed color magnitudes which in turn 
can be used to determine the stellar magnitude relative to a sensor whose re-  
sponse lies in the region covered by the responses defining the color magnitudes. 
Since a large number of stars have now been observed in the U, B, V system, 
and the dominant part of the response curves of many sensors lies in that part 
of the spectrum covered by the U, B, and V filters the techniques developed here 
have a very general use. 

THE MAGNITUDE EQUATION 

The stellar magnitude (ms) of an astronomical radiation source reduced to 
outside the earth's atmosphere and incorporating the interstellar absorption is 
given by 
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- I S  

Is0 
ms - mso - 2.5 l o g -  = - 2.5 l o g  Is + ks , 

where 

Is = [ J (h)  as(h) dh . 

J ( A )  is the spectral distribution of light intensity from the source, as is the 
spectral response function of the optical train observing the radiation, and the 
constant Is, is the value of Is for a standard source of radiation with magnitude 
mso . If z black-body distribution is assumed then 

where T is the temperature of the source. 

To obtain information about the spectral distribution of light intensity from 
a multi-color magnitude system such as  Johnson's & Morgan's UBV system we 
use the constant energy concept widely practiced in photometric work. Since 
many observers today use the effective wave number concept we adopt this pro- 
cedure here 151. 

Let x = 1 / X ,  then the effective intensity integral equation (2) becomes 

Is =[ x-' J (x)  o-,(x) dx 

or 

Is = [ F(x) us(.) dx 

where 

F(x) = x - ~  J (x)  . 
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For a black-body distribution 

up(x) dx +--- dZF 
dx2 

c1 x3 
F(x) = 

ec2/TX -1 

l m ( x  - xo)2 u,(x) dx + . . . 

Letting 

and expanding F(x) in a Taylor series about xo the effective intensity integral 
becomes 

= l m u s ( x )  dx [F(xo) + AF] 

where m 

and 

The stellar magnitude is then given by 

ms = - 2.5 log[F(xo) + AF] + kb 

= - 2.5 log F(x o) + l o g  (1 + E ) ]  + k', [ 

3 



where 

Since 

provided 1 E /  < 1 

Thus, if the band pass of the receiver is narrow enough or  the second and 
higher derivatives of the energy distribution F(x) a re  sufficiently small the 
magnitude is a measure of the monochromatic flux at xo i.e. 

ms = - 2.5 logF(xo j  t k', - 

For the U ,  B, and V bandpasses we assume that this is the case. Hence, 

U = - 2.5 l o g  F(x,) + k, 

where 

B = - 2.5 l o g  F(x,) + k, 

V = - 2.5 l o g  F(x,) + k, 

J Xci(X)  dx  
0 x: =-  ~ i = P . 2 , 3  (7) 

and ui (X) is the corresponding response function. Thus the U,  B, V system 
provides a means of approximating the energy distribution at three points within 
the response of many photomultipliers and other sensors. 

Since the band width of most sensors is at least three times as wide as each 
filter (U, B, or V) we assume that the energy distribution over the range of 
interest is quadratic. 



Thus, the S magnitude, m ,, is given by 

ms = - 2.5 [log F(Xs) t ( l o g  e )  E ]  t ks 

where E is defined by equation (5) with the third and higher derivatives assumed 
to be zero, x, is given by equation (7) and the response function used in the 
equations is that of the measured response of the sensor of interest. 

From the three values of y(x) = log F(x) obtained by the U, B, and V magni- 
tudes (equation 6) a quadratic approximation to y(x) can be determined by con- 
structing a quadratic function passing through the three points i.e. 

y(X)  = AlX2 + A2X + A, , 

where the coefficients Ai are  determined from the matrix equation 

The explicit solution is given by 

(9) 

where 
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To determine the S magnitude as given by equation (8) we need y(Xs) = l o g F ( X s )  
and E.  y(Xs)  is obtained directly from equation (9) i.e. 

Now 

where 

Since 

then 

From equation (9) 

- -  d2y - 2A1 , 
d X 2  

thus 
1 

E =-  2 .en 10 [ 2A1 -t t n  10 (2A,Xs  -t A,)2] p2(Xs)  
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In summary, the constants X,, X,, X,, and Xs a r e  determined from the 
known response of the U,  B, V, and S bandpasses respectively ( p 2 ( X 2 )  is 
obtained from the S response and xs) . Y, , y, , and y3 a re  obtained from equation 
( 6 ) ,  then A,, A,, and A, from equation (10) log F(Xs) from equation (ll), E from 
equation (12), and finally the S magnitude (m,) from equation (8). 

By convention the values of U, B, and V are  not given directly, but as  a single 
magnitude (V) and two color indices (B-V and U-V o r  U-B). Since the data is 
often obtained in terms of V, B-V, and U-V [ 4 1 we will write our solution in terms 
of these variables. Thus 

i- X,X,(X, - X,)(B - v - 
where 

Therefore, 

= V t b,(U - V) t b,(B - V) t bo i- Am , 
m S  

where 

I' 1 
5 

Am = -- &n IO p2(Xs) C,(U - V) -t C,(B - V) -t C3 
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The constant b o  is arbitrary and serves as a zero point for  the magnitude 
system. The only constant dependent upon stellar energy distributions is C, 
which does not require absolute measures but only relative ones i.e. ultraviolet 
and blue relative to visual. Besides, the constant C,  is involved only in the second 
order term. Since the effective wave numbers are also relative measurements 
it appears that the constants in equation (13) can be determined quite accurately. 
The primary source of e r ro r ,  therefore, will probably be due to the assumptions 
that the flux is linear over each bandpass and quadratic over the entire interval 
of interest. 

, 
which is consistent with Code's results i 5 I. 

CONSTANT ENERGY EFFECTIVE WAVE NUMBERS 

Using the published response curves of the U,  B, and V filters [ 2 1 and the 
reflectivity of two aluminum reflections [ 6 1 we obtain 

x1 =2.889, 3 = 2.296, x, = 1.826, 

If the energy distributions were linear over each bandpass then the plots of 
the distributions versus wave number for different stars (with the same magni- 
tude) would intersect at a point. This point of intersection would give the effective 
wave number and the value of the flux at the effective wave number. Actually 
the plots will not intersect at a point since the flux is not linear, however, a point 
of minimum deviation will exist which approximates the effective wave number. 

UsingWillstrop's datafor V =  0.0 [71 we find that the intersection occurs near 
X= 1.83 andF(1.83)= 1.14x lo-' (erg/cm2/sec) p . The effective wave number ob- 
tained on this manner agrees with that obtained directly from the V sensitivity- 
curve. The value of F(1.83) is consistent with Code's value of 1.13 X lo-' (erg/ 
cm ,/set) p using Minnaert's derived fluxes and Stebbins & Kron's apparent visual 
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magnitude of the sun. It is also consistent with Code's direct measurement of 
1.20 at 1.80. We shall adopt the value of 1.14 x lo-' (erg/cm2/sec) P at 1.83 
(l/p) for V =  0.0. Thus, 

V ?  - 2.5 logF(1.83) i- 0.14 

From Willstrop's data for B = 0.0 the effective wave number of the B band- 
pass is 2.295 and the average value of F(2.295) is 1.24 x lo-' (erg/cm2/sec) P .  
Using the adopted expression for V and Code's expressionfor the monochromatic 
magnitudes we obtain 

l o g  F(X) = 0.4 m(1.83) - m(X) - V -t 0.1421 [ 
where m(x) is Code's monochromatic magnitudes. From Code's data using the 
observed values of B-V and selecting V such that B = 0.0 we find that the effective 
wave number for the B band pass is 2.295 and the average value of F(2.295) is 
1.26 x lo- '  (erg/cm 2/sec) P for B = 0.0. Oke's data [8 3 is for the stars whose 
spectral types are very similiar hence the plotting method using this data does 
not yield a satisfactory approximation to the effective wave numbers i.e. the 
curves are nearly parallel. The average value of the flux at the effective wave 
numbers , however, should be consistent with that of Willstrop's and Code's. 
Indeed this is the case, using Oke's monochromatic magnitudes in the same manner 
as Code's we obtain an average value of 1.29 x 
for  B = 0.0. Thus, the effective wave number as obtained from Johnson's, Willstrop's, 
and Code's data is in agreement and the value for the f lux  at the effective wave 
number from Willstrop's, Code's, and Oke's data is also consistent. Hence, 

(erg/cm2/sec) ,LL at 2.29(1/p) 

B 1 - 2.5 l o g  F(2.295) i- 0.251 , 

From Code's data, the observed values of U-V, and selecting V such that 
V = 0.0 we obtain an effective wave number for the U band pass of 2.905 with an 
average value of 0.50 x 16' (erg/cm2 /sec) P for the flux. Oke's data gives an 
average value of 0.41 (erg/cm2/sec) P at 2.90. Thus, we adopted the value of 
0.45 (erg/cm2/sec) p at 2.89 (1/P) for  U = 0.0. Hence, 

U 2 - 2.5 l o g  F(2.89) - 0.867 

A summary of the results of the various investigators and the adopted values 
a r e  given below. 
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Effective Wave Numb e r 

2.29 

2.296 

2.295 

2.295 

2.295 

U 

1.83 

1.826 

1.83 

1.83 

2.89 

2.889 

2.905 

2.89 

B = O  
X = 2.295 

1.24 

1.26 

1.29 

1.26 

B - 1  v 

v = o  
X = 1.83 

1.13 

1.14 

1.14 

Remarks 

Sensitiirity - curves by Johnson & 
Morgan - calculated by Code 

Sensitivity - curves by Johnson & 
Morgan - calculated by author 

Willstrop's data 

Code's data 

Adopted 

Flux at Effective Wave Number 1 
u = o  
X = 2.90 

0.50 

0.41 

0.45 

Code using Minnaert's flux and 
Stebbins & Kron V of sun 

Wills t rop ' s data 

Code's data 

Oke's data 

Adopted 

AN EXAMPLE 

From the nominal S4 response [9: we obtain as the effective number of the 
S4 response the value 2.49 and p2 (2.49) = 0.155. With these values plus the 
values given above we obtain 

b, = 0.439, b2  = 0.413, 

c1 = - 1.321, ~2 = 0.890, 

c 3  = - 1.43 
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Hence, 

ms4 = V f 0.439(U - V) t 0.413(B - V) t 0.145 

-0.071 [I - 1.32(U - V) f 0.89(B - V) - 1.431 * 

where the zero point has been selected such that ms4  - V = 0 when U - V = B - V =  0 

To test the accuracy of this formula we generated the flux of seven stars 
( E  Ori,  p Ori,  a Lyr, p Ari,  5 Boo, h Ser & a Tau) from Code's data. The seven 
s tars  were selected so as  to cover a wide range of U - V and B - Vvalues. The values 
of V used to generate these data were chosen so that B = 0 merely to keep the 
values of the flux within the same numerical range. 

The values beyond X = 2.94 were obtained by linear extrapolation using the 
values at X = 2.74 and X = 2.94. Values at even increments were obtained by 
linear interpolation. Using these energy distributions and the response curves the 
deflection y, the blue-yellow color index c,, , and the ultraviolet-yellow color 
index cP were computed using numerical integration. Values of V, B - V, and 
U - V were then computed using a zero point so as to minimize the mean differ- 
ence between the observed and computed values. 

The relationships were 

V = - 2.5 l o g y  -t 0.22 , 

U - 0 = 2 .5  1 0 g L -  0.05 , 
P 

Y 
b 

B - V = 2.5 log- f 0.79 . 

Except for the U - V of p O r i  and u Boo the agreement between the observed 
and computed values a re  quite good and the extrapolation in the ultraviolet can 
easily account fo r  the e r ror  of 0.1 mag. in U - V for these two stars. 

The energy distributions from Code were then assumed to be correct and the 
computed V, U - V, and B - V (from these energy distributions plus the U ,  B, and 
V response functions) to be correct also. The S4 magnitudes were then computed 
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by integration and by equation (14),  (actually the value of C and the zero point 
were adjusted to agree with Code's data rather than the adopted means). The 
maximum error  is only 0.06 magnitudes which includes uncertainties in the 
sensitivity-curves as well as the assumed energy distributions. Since the con- 
stants used in equation (14) are based on data which is consistent from several 
different sources it appears that the S4 magnitude can be pedicted from the 
observed V, U - V ,  B - V magnitde & colors to within 0 .1  magnitude (assuming 
that the S4 spectral response is accurately known). 

Actually, the energy distributions can be approximated much better by using 
the relationships 

Y(X> = A,X2 + A2X 4 A, , 

rather than retaining only quadratic te rms  in the expansion of 1QY~" '  . This 
additional accuracy in the energy distrituions, however, affects the S4 magnitudes 
very little. This is due to the fact that the third and higher moments ( p 3  , p4 . . . ,) 
about the effective wave number for  this particular curve are very small. For a 
response curve with a wider band pass of a large third moment about the effective 
wave number the better approximation may be necessary. 

CONCLUSION 

The method presented here wm specificaily formulated with the intent of 
being applied to a S4 response and particularly to obtain the guide star list for 
the Orbiting Astronomical Observatory launched in April of 1966. A s  our example 
shows, the method is quite accurate for this typ2 of response. Since that time 
we have found that as suspected the aczuracy falls off for sensors which respond 
to a wider range of light. However, with more recent data and minor modifications 
to our method here it is reasonable to expect that similar procedures will be 
applicable for any sensor whose response lies in the 3000-8000 Angstrom range 
with an accuracy of better than 0.1 magnitudes. The i c w l t s  of these late improve- 
ments will be presented at a later date. 
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